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Using large-scale numerical calculations we explore spatiotemporal chaos in Rayleigh-Bénard convection
for experimentally relevant conditions. We calculate the spectrum of Lyapunov exponents and the Lyapunov
dimension describing the chaotic dynamics of the convective fluid layer at constant thermal driving over a
range of finite system sizes. Our results reveal that the dynamics of fluid convection is truly chaotic for
experimental conditions as illustrated by a positive leading-order Lyapunov exponent. We also find the chaos
to be extensive over the range of finite-sized systems investigated as indicated by a linear scaling between the
Lyapunov dimension of the chaotic attractor and the system size.
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Many open challenges in science and engineering are due
to the complex dynamics of spatially extended systems that
are driven far from equilibrium �1�. Examples include the
weather and climate, the trajectories of hurricanes, earth-
quakes, the patterns of growing colonies of microorganisms,
manufacturing uniform materials from a melt, and the con-
vection of suspended organisms in the oceans and rivers.
These systems form intricate spatial patterns that affect the
transport of mass, momentum, and energy, which then affect
the spatial patterns. These interactions are often nonlinear
and present a significant obstacle to furthering our under-
standing of many real-world systems. A common feature of
spatially extended nonequilibrium systems is spatiotemporal
chaos, where the dynamics are aperiodic in time and space
�aperiodic time dynamics alone is often referred to as chaos�.
A great deal of progress has been made in understanding
spatiotemporal chaos from studies of simplified models of
spatially extended systems. However, it remains unclear
whether these insights apply to experimentally accessible
systems. In this Rapid Communication we present large-
scale calculations that give insight into the spatiotemporal
chaos of an experimentally accessible system. Computations
such as these provide a quantitative link between theoretical
ideas and the dynamics of spatiotemporal chaos for real-
world systems.

A particular open challenge is to understand the origins
and structure of the active degrees of freedom of complex
dynamics in extended systems. However, in most physical
systems the complex dynamics is the result of many compet-
ing factors including strong external driving �such as fluid
turbulence�, many interacting components �such as the com-
plex regulatory networks common in biology�, or large sys-
tem size �such as the weather and climate�. Of these possi-

bilities the case of large system size is particularly promising
in light of the modern supercomputers and improved parallel
algorithms that are now available. In what follows we ex-
plore numerically the development of spatiotemporal chaos
in a fluid system for fixed driving as a function of increasing
system size for the precise conditions of experiment.

Much of our current understanding of chaos has come
from studies where the chaotic attractor of the system dy-
namics can be described geometrically in terms of only a few
chaotic degrees of freedom. However, it is not clear how to
proceed when the dimension of the attractor becomes large
as is expected for most experimentally relevant systems
�2–6�. In this case geometrical descriptions of the attractor
become very difficult and prohibitive to implement �5�.
Many significant open questions remain. For example, of the
infinite degrees of freedom in a continuous system �actually
several million degrees of freedom on a computer� how
many are excited? What are the origin, structure, and dynam-
ics of the chaotic degrees of freedom? How do these chaotic
degrees of freedom enter the dynamics as the system size is
increased? Are there important features of the striking visual
patterns of many nonequilibrium systems that significantly
contribute to spatiotemporal chaos?

It is possible to begin to address these questions by ap-
pealing to the defining feature of chaos: the exponential
separation of trajectories of solutions in phase space from
solutions that originate from nearly identical initial condi-
tions �5�. The separation in phase space is quantified by the
spectrum of Lyapunov exponents �i where i=1, . . . ,N with
�i arranged in descending order. The leading-order exponent
�1 describes the growth of the line separating two trajectories
in phase space, �1+�2 describes the growth of a two-
dimensional area of initial conditions, and �i=1

N �i describes
the growth of an N-dimensional ball of initial conditions. For
many practical systems there will be a finite number of ex-
ponents that yield a positive result when added together. The
exact number of exponents required for the sum to vanish
corresponds to the dimension of the ball of initial conditions
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that will neither grow nor shrink under the dynamics �often
called the Lyapunov dimension D��. Given only the
Lyapunov exponents, D� can be determined from the
Kaplan-Yorke formula D�=k+Sk / ��k+1�, where k is the larg-
est n for which Sn=�i=1

n �i�0 �6�. The value of D� is the
minimum number of active degrees of freedom that contrib-
ute to the chaotic dynamics �7,8�. The Lyapunov exponents
are extremely difficult to measure experimentally since it is
usually not possible to begin experiments from slightly dif-
ferent initial conditions and the perturbations quickly grow
beyond the linear regime as required by the linearization in
the definition of the Lyapunov exponents. In addition, the
Lyapunov exponents are also computationally intensive to
calculate since an additional linearized solution must be cal-
culated simultaneously for each desired exponent. However,
with the advent of large supercomputers and improved nu-
merical algorithms these calculations are now possible for
experimentally accessible systems as we show here.

Ruelle �9� was the first to conjecture that for very large
systems the Lyapunov dimension should scale extensively
with the size of the system, D���ds, where � is the system
size and ds is the number of spatially extended dimensions.
Extensive chaos has been confirmed in a variety of simple
model systems �10–15� and for experimentally motivated
systems with nonphysical boundary conditions �2,3�. How-
ever, these arguments have not been tested for experimen-
tally realistic systems.

We study the spatiotemporal chaos of Rayleigh-Bénard
convection �RBC� given by the buoyancy-driven convection
of a thin layer of fluid heated uniformly from below. RBC is
a canonical pattern-forming system in which theoretical and
experimental research continues to provide important new
insights into the dynamics of nonequilibrium systems. Gov-
erning the fluid motion of Rayleigh-Bénard convection are
the well-known Boussinesq equations, a set of nonlinear par-
tial differential equations which yield the fluid velocity, pres-
sure, and temperature as a function of time �1�. The control
parameter R, where R is the Rayleigh number, is proportional
to the constant temperature difference across the fluid layer
and is the key parameter that is varied during a typical con-
vection experiment; small values of R correspond to simple,
often time-independent, flows; intermediate values of R cor-
respond to complex chaotic flows as studied here �see Fig.
1�; and very large values of R correspond to strongly driven
turbulent flow. It is now possible to solve these equations
numerically for convection domains with the precise condi-
tions of experiment using a geometrically flexible and highly
efficient, parallel, spectral element method �16� �for its use
with RBC see, for example, �17��. In our simulations we
impose the no-slip velocity condition at all material surfaces
and the lateral sidewalls are considered perfectly conducting.

The Lyapunov exponents are computed by measuring tra-
jectory separation in N� independent linearized computations
�where N� is the number of desired Lyapunov exponents�
�17,18�. A driving Rayleigh-Bénard convection system satis-
fying the Boussinesq equations and subject to appropriate
boundary conditions is computed in parallel with the N� lin-
earized equations. The growth of the magnitudes of the per-
turbation vectors yields the separation in phase-space trajec-
tories from which one can deduce the finite-time Lyapunov
exponents �19�.

Increasing the size of a weakly driven spatially extended
system commonly results in spatiotemporal chaos. For ex-
ample, the pattern dynamics of RBC depend upon the aspect
ratio of the convection domain �for a cylindrical domain the
aspect ratio �= �radius� / �depth��. This was illustrated experi-
mentally in the early pioneering work of Ahlers and Be-
hringer where heat transport measurements indicated a tran-
sition from steady to chaotic dynamics by simply increasing
the aspect ratio of the convection layer �20�. For smaller
domains the lateral boundaries play a significant role in de-
termining the dynamics and, as the system size increases,
there is a transition to bulk-dominated dynamics. In the fol-
lowing we explore spatiotemporal chaos in RBC over a
range of system sizes where this transition from boundary- to
bulk-dominated dynamics is occurring. In particular, fluid
and driving parameters are chosen to correspond to the spiral
defect chaos state �21� which consists of the complex time-
dependent dynamics involving the annihilation and destruc-

FIG. 1. �Color online� Chaotic flow field from numerical simu-
lations in three different aspect ratio domains �= �a� 4.72, �b� 10,
and �c� 15. Shown is the two-dimensional temperature field at mid-
depth. Dark regions �red in color� indicate warm rising fluid and
lighter regions �blue in color� indicate cool falling fluid. In all simu-
lations R=6000 �R /Rc=3.5 where Rc is the critical Rayleigh num-
ber�, �=1, with a numerical time step
�t=0.0005.

PAUL et al. PHYSICAL REVIEW E 75, 045203�R� �2007�

RAPID COMMUNICATIONS

045203-2



tion of left- and right-handed spiral shaped convection roll
structures in large domains �21,22�. Theoretical and experi-
mental investigations of spiral defect chaos in RBC have
played an important role in the study of pattern formation.
The spiral defect chaos state is only observed in large-aspect-
ratio domains �for cylindrical convection cells �	20�. For
systems smaller than this, as studied here, the lateral walls of
the convection domain are important and the dynamics ex-
hibit spatiotemporal chaos that consists of the complicated
interactions of many defects including wall foci, disloca-
tions, targets, and roll pinchoff events �see Fig. 1�. In this
regime, the size of the system significantly affects the dy-
namics and our study explores spatiotemporal chaos in a
finite-sized system which is important for many real-world
applications �many naturally occurring systems exhibit com-
plex dynamics with system sizes that cannot be approxi-
mated as infinite or periodic�. In light of this we perform
numerical simulations for the precise conditions of experi-
ment and we study spatiotemporally chaotic RBC over a
range of aspect ratios at fixed driving �given by constant R�.
Information about the Lyapunov spectra and Lyapunov di-
mension yield insight into the basic origins and nature of

spatiotemporal chaos for an experimentally accessible sys-
tem.

We have performed a series of large-scale numerical
calculations to determine the Lyapunov spectra and
Lyapunov dimension of RBC for six aspect ratios spanning
4.72
�
15 with thermal driving given by R /Rc=3.5
�where Rc=1708 is the critical Rayleigh number at which
convection occurs� and Prandtl number �=1. The driving
RBC solution is first initiated from random thermal pertur-
bations and allowed to continue until the initial transients
have subsided, at which point it is assumed that the dynamics
are on the attractor �an estimate for this time is given by �2

which is the nondimensional time required for heat to diffuse
a distance �� �23�. At this time, N� independent lineariza-
tions are initiated from random initial conditions and these
simulations are then allowed to continue at least another �2

time units. In order to keep the magnitude differences resolv-
able the perturbation vectors are periodically Gram-Schmidt
orthonormalized to yield the Lyapunov vectors. For each as-
pect ratio two or three simulations were performed.

The spectra of Lyapunov exponents �i from these simula-
tions are shown in Fig. 2. For extensive chaos the Lyapunov
spectra collapse onto a single curve; our results suggest that
this is true for �	10. To indicate this a sixth-order polyno-
mial is fitted to the �=15 data and is shown by the solid line.
The deviations of the spectra from this fit for the smaller-
aspect-ratio domains is the result of boundary-dominated dy-
namics �19�. The Lyapunov spectrum can be integrated to
yield the dimension density ��=D� /�2, which is shown in
Fig. 2�b� where we find that ���0.25. Therefore, for an
aspect ratio of 100 �a common size used in experiment� the
Lyapunov dimension would be D�=2500 indicating the pres-
ence of 2500 chaotic degrees of freedom. In the work of
Egolf et al. �3� it was found that RBC exhibited extensive
chaos in large domains with nonphysical periodic boundary
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FIG. 2. �Color online� �a� Lyapunov spectrum ��i /�2� as a func-
tion of i /�2 where i=1, . . . ,N and N is the number of Lyapunov
exponents. Results are shown for six different aspect ratios; the
solid line is a sixth-order polynomial curve fit to the data for
�=15. �b� Calculation of the Lyapunov dimension �� as determined
by integrating the curve fit for �=15 from �a�.
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FIG. 3. Extensive chaos in RBC as illustrated by the linear
relationship between the Lyapunov dimension D� and system size
�. The error bars are determined from multiple simulations for each
aspect ratio starting from different random initial conditions for the
driving solution. Each data point is the result of two numerical
simulations except at �=4.72 and 10 which are for three different
initial conditions. If an error bar is not visible it is because the runs
yielded nearly identical results for D�.
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conditions. Our work confirms these findings and further-
more indicates that the chaos is also extensive over a range
of finite system sizes for experimental conditions.

The extensivity of the chaos is clearly illustrated in Fig. 3
where the Lyapunov dimension is plotted as a function of �2.
The slope of the solid line also yields the dimension density.
The dimension is extensive for all of the aspect ratios ex-
plored except for the smallest system ��=4.72� where a de-
viation from extensivity is apparent. An analysis of the flow
field dynamics reveals a transition from bulk- to boundary-
dominated dynamics over the range of system sizes explored
�19�. It is interesting to point out that even though the
Lyapunov spectra for ��4.72 do not collapse onto the curve
fit in Fig. 2 describing the largest aspect ratio �=15 dynam-
ics the Lyapunov spectra still yield Lyapunov dimensions
that are extensive.

A volume �ds contains D� degrees of freedom which sug-
gests a natural length scale for an individual degree of free-
dom that is given by �= �D /�ds�−1/ds �1�. For extensive chaos
� is independent of system size. Our simulations yield a cha-
otic length scale of ��2 which suggests that an individual
degree of freedom would occupy, on average, an area
of �2�4 �for reference, the width of the convection rolls in
Fig. 1 is approximately 1�. This suggests that localized defect

structures could contribute significantly to spatiotemporal
dynamics which is corroborated from measurements of the
dynamics of the Lyapunov vector fields �3,19�.

Our results reveal that RBC is truly chaotic for experi-
mental conditions and yield a positive leading order
Lyapunov exponent. In addition, spatiotemporal chaos in
RBC is extensive over a range of finite system sizes includ-
ing smaller domains whose dynamics are strongly affected
by the presence of lateral sidewalls. The precise manner in
which the geometry of the strange attractor changes to main-
tain extensivity over this range remains an open challenge.
However, our results illustrate that with the availability of
supercomputers and improved numerical algorithms such
fundamental questions can now be addressed quantitatively
for the precise conditions of experiment.
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